Answer:
ω = 5.41 rad/s
Explanation:
Since the rod is rotating around its axis, angular momentum will play part in this question.
The conservation of angular momentum implies that
[tex]L_1 = L_2[/tex]
So, the initial angular momentum is
[tex]L_1 = m_b v_b \frac{L}{4} = (4.5\times 10^{-3}~{\rm kg})(300~{\rm m/s})(\frac{0.25}{4}~{\rm m}) = 0.0844~{\rm kg.m^2/s}[/tex]
The final angular momentum includes the rod and the bullet together. So,
[tex]L_2 = I\omega\\I = I_{rod} + I_{bullet} = \frac{1}{12}m_r L^2 + m_b(\frac{L}{4})^2 = \frac{1}{12}3(0.25)^2 + (4.5\times 10^{-3})(\frac{0.25}{4})^2 = 0.0156~{\rm kg.m^2}\\L_2 = L_1 = I\omega\\0.0844 = 0.0156\omega\\\omega = 5.41~{\rm rad/s}[/tex]