Respuesta :
Answer:
(a)
x = 2
y = 42.019
(b)
x = 3.5
y = 51.833
(c)
x = 12
y = 107.447
(d)
x = 1.5
y = 38.747
Step-by-step explanation:
If you use a regressor calculator you will find that
y = 6.542x + 28.933
then for (a)
x = 2
y = 42.019
(b)
x = 3.5
y = 51.833
(c)
x = 12
y = 107.447
(d)
x = 1.5
y = 38.747
Regression equations are used to represent scatter plots
- The regression equation is [tex]\^y = 6.54\^x + 28.94[/tex]
- The predicted values when x = 2, 3.5, 12 and 1.5 are 42.02, 51.83, 107.42 and 38.75
The table is given as:
x | 1 2 3 3 4 6
y | 37 41 51 48 65 69
To determine the regression equation, we make use of an graphing calculator.
From the graphing calculator, we have:
- Sum of X = 21
- Sum of Y = 311
- Mean X = 3.5
- Mean Y = 51.8333
- Sum of squares (SSX) = 17.5
- Sum of products (SP) = 114.5
The regression equation is represented as:
[tex]\^y =b\^x + a[/tex]
Where:
[tex]b = \frac{SP}{SS_x}[/tex] and [tex]a = M_y - bM_x[/tex]
So, we have:
[tex]b = \frac{SP}{SS_x}[/tex]
[tex]b = \frac{17.5}{114.5}[/tex]
[tex]b = 6.54[/tex]
[tex]a = M_y - bM_x[/tex]
[tex]a = 51.83 - (6.54*3.5)[/tex]
[tex]a = 28.94[/tex]
Substitute values for (a) and (b) in [tex]\^y =b\^x + a[/tex]
[tex]\^y = 6.54\^x + 28.94[/tex]
The predicted values when x = 2, 3.5, 12 and 1.5 are:
[tex]\^y = 6.54 \times 2 + 28.94 = 42.02[/tex]
[tex]\^y = 6.54 \times 3.5 + 28.94 = 51.83[/tex]
[tex]\^y = 6.54 \times 12 + 28.94 = 107.42[/tex]
[tex]\^y = 6.54 \times 1.5 + 28.94 = 38.75[/tex]
Hence, the predicted values when x = 2, 3.5, 12 and 1.5 are 42.02, 51.83, 107.42 and 38.75
Read more about regressions equations at:
https://brainly.com/question/5586207
Otras preguntas
