Respuesta :
Answer:
log Subscript 2 Baseline 9 x cubed is equivalent to 2 log subscript 2 Baseline 3 + 3 log subscript 2 Baseline x
Step-by-step explanation:
Given:
log Subscript 2 Baseline 9 x cubed?
Required:
Find the equivalent of the above expression.
First, we need to represent it mathematically;
log Subscript 2 Baseline 9 x cubed = [tex]log_{2} 9x^{3}[/tex]
From Laws of logarithm
[tex]log_{x} AB = log_{x} (A* B)\\log_{x} AB = log_{x}A + log_{x}B[/tex]
Note how the expression is split into two
We'll apply the same logic above, here
First, is to simplify the mathematical expression;
[tex]log_{2} 9x^{3} = log_{2} (9 * x^{3})[/tex]
Then we split into two
[tex]log_{2} 9x^{3} = log_{2}(9) + log_{2}(x^{3})[/tex]
[tex]log_{2} 9x^{3} = log_{2}(3^2) + log_{2}(x^{3})[/tex]
Also from laws of logarithm,
[tex]log_{m}A^{n} = nlog_{m}A[/tex]
We'll apply this law on [tex]log_{2}(x^{3})[/tex] and [tex]log_{2}(3^{2})[/tex]
[tex]log_{2}x^{3} = 3log_{2}x[/tex]
[tex]log_{2}(3^2) = 2log_{2}3[/tex]
So, [tex]log_{2} 9x^{3} = log_{2}(9) + log_{2}(x^{3})[/tex] becomes
[tex]log_{2} 9x^{3} = 2log_{2}3 + 3log_{2}x[/tex]
log Subscript 2 Baseline 9 x cubed is equivalent to [tex]2log_{2}3 + 3log_{2}x[/tex]
[tex]2log_{2}3[/tex] can be represented as 2 log subscript 2 Baseline 3
and
[tex]3log_{2}x[/tex] can be represented as 3 log subscript 2 Baseline x
Hence, log Subscript 2 Baseline 9 x cubed is equivalent to 2 log subscript 2 Baseline 3 + 3 log subscript 2 Baseline x
Otras preguntas
