Respuesta :

Answer:

log Subscript 2 Baseline 9 x cubed is equivalent to 2 log subscript 2 Baseline 3 + 3 log subscript 2 Baseline x

Step-by-step explanation:

Given:

log Subscript 2 Baseline 9 x cubed?

Required:

Find the equivalent of the above expression.

First, we need to represent it mathematically;

log Subscript 2 Baseline 9 x cubed = [tex]log_{2} 9x^{3}[/tex]

From Laws of logarithm  

[tex]log_{x} AB = log_{x} (A* B)\\log_{x} AB = log_{x}A + log_{x}B[/tex]

Note how the expression is split into two

We'll apply the same logic above, here

First, is to simplify the mathematical expression;

[tex]log_{2} 9x^{3} = log_{2} (9 * x^{3})[/tex]

Then we split into two

[tex]log_{2} 9x^{3} = log_{2}(9) + log_{2}(x^{3})[/tex]

[tex]log_{2} 9x^{3} = log_{2}(3^2) + log_{2}(x^{3})[/tex]

Also from laws of logarithm,

[tex]log_{m}A^{n} = nlog_{m}A[/tex]

We'll apply this law on [tex]log_{2}(x^{3})[/tex] and [tex]log_{2}(3^{2})[/tex]

[tex]log_{2}x^{3} = 3log_{2}x[/tex]

[tex]log_{2}(3^2) = 2log_{2}3[/tex]

So, [tex]log_{2} 9x^{3} = log_{2}(9) + log_{2}(x^{3})[/tex] becomes

[tex]log_{2} 9x^{3} = 2log_{2}3 + 3log_{2}x[/tex]

log Subscript 2 Baseline 9 x cubed is equivalent to [tex]2log_{2}3 + 3log_{2}x[/tex]

[tex]2log_{2}3[/tex] can be represented as 2 log subscript 2 Baseline 3

and

[tex]3log_{2}x[/tex] can be represented as 3 log subscript 2 Baseline x

Hence, log Subscript 2 Baseline 9 x cubed is equivalent to 2 log subscript 2 Baseline 3 + 3 log subscript 2 Baseline x

Answer:

a) log2 9x^3

Step-by-step explanation:

got it right on edg

RELAXING NOICE
Relax