The mass of the cylinder D is obtained by integrating the density function over D:
[tex]\displaystyle\iiint_D\rho(r,\theta\,z)\,\mathrm dV[/tex]
With [tex]\rho(r,\theta,z)=1+\frac z2[/tex], and
[tex]D=\left\{(r,\theta,z)\mid 0\le r\le2,0\le z\le10\right\}[/tex]
the mass would be
[tex]\displaystyle\int_0^{2\pi}\int_0^2\int_0^{10}1+\frac z2\,\mathrm dz\,\mathrm dr\,\mathrm d\theta=4\pi\int_0^{10}1+\frac z2\,\mathrm dz[/tex]
[tex]4\pi\left(z+\dfrac{z^2}4\right)\bigg|_0^{10}[/tex]
[tex]=4\pi\left(10+\dfrac{100}4\right)=\boxed{140\pi}[/tex]