Respuesta :
Answer:
The cost function is [tex]C(x)=16x+200\ln \left|x-1\right|+2000[/tex].
The average cost of 1000 shoes is $19.38.
Step-by-step explanation:
We define the marginal cost function to be the derivative of the cost function or [tex]C'\left( x \right)[/tex].
To find the cost function, [tex]C(x)[/tex] we need to integrate the marginal cost function
[tex]\int {C'(x)} \, dx =C(x)\\\\\int \:16+\frac{200}{x-1}dx\\\\\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx\\\\=\int \:16dx+\int \frac{200}{x-1}dx[/tex]
[tex]\int \:16dx=16x[/tex]
[tex]\int \frac{200}{x-1}dx=200\ln \left|x-1\right|[/tex]
[tex]\mathrm{Add\:a\:constant\:to\:the\:solution}\\\\C(x)=\int \:16+\frac{200}{x-1}dx=16x+200\ln \left|x-1\right|+D[/tex]
We know that the fixed costs are $2,000 per week, so the constant [tex]D[/tex] is equal to 2000, and the cost function is
[tex]C(x)=16x+200\ln \left|x-1\right|+2000[/tex]
If [tex]C(x)[/tex] is the cost function for some item then the average cost function is,
[tex]\overline{C}\left( x \right) = \frac{{C\left( x \right)}}{x}[/tex]
We know that 1,000 pairs of shoes are produced each week, so the the average cost is
[tex]\overline{C}\left( 1000 \right) = \frac{{C\left( 1000 \right)}}{1000}=\frac{16\cdot 1000+200\ln \left|1000-1\right|+2000}{1000} \\\\\overline{C}\left( 1000 \right)=\frac{200\ln \left(999\right)+18000}{1000}\approx19.38[/tex]
