Respuesta :
Answer:
[tex]CI = (89.2 - 92.4) \pm 1.6883 \sqrt{\frac{3.1^{2} }{38} +\frac{3.8^{2} }{37} }[/tex]
Step-by-step explanation:
Data of newly constructed decks treated with very clear deck sealants:
n₁ = 38, [tex]\bar {x_{1} } = 89.2[/tex], S₁ = 3.1
Data of newly constructed decks treated with sure seal deck sealants:
n₁ = 37, [tex]\bar {x_{2} } = 92.4[/tex], S₂ = 3.8
First calculate the degree of freedom
[tex]df = \frac{[\frac{s_{1} ^{2} }{n_{1} } + \frac{s_{2} ^{2} }{n_{2} } ]^{2} }{\frac{(\frac{s_{1} ^{2} }{n_{1} } )^{2}}{n_{1}-1 } + \frac{(\frac{s_{2} ^{2} }{n_{2} } )^{2}}{n_{2}-1 }}[/tex]
[tex]df = \frac{[\frac{3.1^{2} }{38} + \frac{3.8^{2} }{37}]^2}{\frac{(\frac{3.1^{2} }{38})^{2} }{37} + \frac{(\frac{3.8^{2} }{37})^{2} }{36}}[/tex]
df = 69.4
df = 70, α = 1 - 0.9 = 0.1
[tex]t_{\frac{\alpha}{2} } = t_{0.05 }= 1.688[/tex]
[tex]CI = \bar{X_{1} } - \bar{X_{2} } + t_{\frac{\alpha}{2} } \sqrt{\frac{S_{1} ^{2} }{n_{1} +} \frac{S_{2} ^{2} }{n_{2} } }[/tex]
[tex]CI = (89.2 - 92.4) \pm 1.6883 \sqrt{\frac{3.1^{2} }{38} +\frac{3.8^{2} }{37} }[/tex]
You can use formula for finding CI here as shown below.
The needed confidence interval is given by:
[tex]CI = (89.2 - 92.4) \pm1.688\sqrt{\dfrac{3.1^2}{38} + \dfrac{3.8^2}{37}}\\[/tex]
Given that:
- For newly constructed decks treated with very clear deck sealants: [tex]n_1 = 38, \: \overline{x}_1 = 89.2, \: s_1 = 3.1[/tex]
- For newly constructed decks treated with sure seal deck sealant:[tex]n_2 = 37, \: \overline{x}_2 = 92.4, \: s_2 = 3.18[/tex]
Finding Confidence Interval:
The formula for Confidence Interval to estimate the difference in mean ratings for the two deck sealants is given by:
[tex]CI = \overline{x}_1 - \overline{x}_2 \pm t_{\frac{\alpha}{2}}\sqrt{\dfrac{s^2_1}{n_1} + \dfrac{s^2_2}{n_2}[/tex]
The degree of freedom can be calculated as:
[tex]df = \dfrac{(\dfrac{s_1^2}{n_1} + \dfrac{s_1^2}{n_1})^2}{\dfrac{(\dfrac{s_1^2}{n_1})^2}{n_1 - 1} + \dfrac{(\dfrac{s_2^2}{n_2})^2}{n_2 - 1}}[/tex]
df = 69.4
Since 90% confidence interval is there, thus [tex]\alpha = 1 - 0.9 = 0.1[/tex]
Thus, [tex]t_{\frac{\alpha}{2}} = t_{0.05} = 1.6883[/tex]
Thus, putting values in the formula of Confidence Interval:
[tex]CI = (89.2 - 92.4) \pm1.688\sqrt{\dfrac{3.1^2}{38} + \dfrac{3.8^2}{37}}\\[/tex]
Learn more about confidence interval here:
https://brainly.com/question/2396419