Answer:
0.458 mi/min
Step-by-step explanation:
We are given that
Distance of observer from lift-off point=3 miles
[tex]\theta=\frac{\pi}{5}[/tex]
[tex]\frac{d\theta}{dt}=0.1rad/min[/tex]
We have to find the rate at which the balloon rising at this moment.
[tex]tan\theta=\frac{perpendicular\;side}{base}[/tex]
Using the formula
[tex]tan\theta=\frac{h}{3}[/tex]
Differentiate w.r.t t
[tex]sec^2\theta\frac{d\theta}{dt}=\frac{1}{3}\frac{dh}{dt}[/tex]
Using the formula
[tex]\frac{d(tan\theta)}{d\theta}=sec^2\theta[/tex]
[tex]\frac{dh}{dt}=3sec^2\theta\frac{d\theta}{dt}[/tex]
[tex]\frac{dh}{dt}=3sec^2(\frac{\pi}{5})\times 0.1[/tex]
[tex]\frac{dh}{dt}=0.458 mi/min[/tex]