Answer:
The 99% confidence interval for the average flight time is (103.38, 108.10).
Step-by-step explanation:
The (1 - α)% confidence interval for population mean when the population standard deviation is not known is:
[tex]CI=\bar y\pm t_{\alpha/2, (n-1)}\times \frac{s}{\sqrt{n}}[/tex]
The information provided is:
[tex]n=61,\ \ \sum\limits^{61}_{i=1}{y_{i}}=6450,\ \ \sum\limits^{61}_{i=1}{y_{i}^{2}}=684900[/tex]
Compute the sample mean as follows:
[tex]\bar y=\frac{1}{n}\sum\limits^{61}_{i=1}{y_{i}}=\frac{6450}{61}=105.74[/tex]
Compute the sample standard deviation as follows:
[tex]s=\sqrt{\frac{n\sum\limits^{61}_{i=1}{y_{i}^{2}} - (\sum\limits^{61}_{i=1}{y_{i}})^{2}}{n(n-1)}}=\sqrt{\frac{61\times684900 - (6450)^{2}}{61(61-1)}}=6.9424[/tex]
The critical value of t for 99% confidence level and (n - 1) = 60 degrees of freedom is:
[tex]t_{\alpha/2, (n-1)}=t_{0.01/2, (61-1)}=t_{0.005, 60}=2.66[/tex]
*Use a t-table.
Compute the 99% confidence interval for the average flight time as follows:
[tex]CI=\bar y\pm t_{\alpha/2, (n-1)}\times \frac{s}{\sqrt{n}}[/tex]
[tex]=105.74\pm 2.66\times \frac{6.9424}{\sqrt{61}}\\=105.74\pm 2.3644\\=(103.3756, 108.1044)\\\approx (103.38, 108.10)[/tex]
Thus, the 99% confidence interval for the average flight time is (103.38, 108.10).