Shrinking Loop. A circular loop of flexible iron wire has an initial circumference of 162 cm , but its circumference is decreasing at a constant rate of 14.0 cm/s due to a tangential pull on the wire. The loop is in a constant uniform magnetic field of magnitude 0.500 T , which is oriented perpendicular to the plane of the loop. Assume that you are facing the loop and that the magnetic field points into the loop.
Find the magnitude of the emf EMF induced in the loop after exactly time 8.00s has passed since the circumference of the loop started to decrease.

Respuesta :

Answer:

0.00124 V

Explanation:

Parameters given:

Initial circumference = 162 cm

Rate of decrease of circumference = 14 cm/s

Magnetic field, B = 0.5 T

Time, t = 8 secs

The magnitude of the EMF induced in the loop is given as:

V = (-NBA) / t

Where N = number of turns = 1

B = magnetic field

A = area of loop

t = time taken

First, we need to find the area of the loop.

To do this, we will find the radius after the loop circumference has decreased for 8 secs.

The rate of decrease of the circumference is 14 cm/s and 8 secs has passed, which means after 8 secs, it has decreased by:

14 * 8 = 112 cm

The new circumference is:

162 - 112 = 50 cm = 0.5 m

To get radius:

C = 2 * pi * r

r = C / (2 * pi)

r = 0.5 / (2 * 3.142)

r = 0.0796 m

The area is:

A = pi * r²

A = 3.142 * 0.0796²

A = 0.0199 m²

Therefore, the EMF induced is:

V = (-1 * 0.5 * 0.0199) / 8

V = -0.00124V

This is the EMF induced in the coil.

The magnitude is |-0.00124| V = 0.00124 V.

ACCESS MORE