Answer:
-0..072 Inches Per Minutes
Step-by-step explanation:
Volume of a Cylinder, V = [tex]\pi r^2 l[/tex]
Given l=32 Inches, r=0.5 Inches
V = [tex]\pi*0.5^2*32=8\pi \:cubic \:inches[/tex]
[tex]\frac{dV}{dt}=\pi r^2\frac{dl}{dt} +\pi l(2r)\frac{dr}{dt}[/tex]
Since the Volume is constant, [tex]\frac{dV}{dt}=0[/tex]
After one minute,
Since the volume is constant
[tex]V=\pi*r^2*50=8\pi\\r^2=\frac{8}{50} =\frac{4}{25} \\r=\sqrt{\frac{4}{25}} =\frac{2}{5}\\\text{Radius after 1 Minute}=\frac{2}{5} Inches[/tex]
Therefore:
[tex]\frac{dV}{dt}=\pi r^2\frac{dl}{dt} +\pi l(2r)\frac{dr}{dt}\\0=\pi*(\frac{2}{5})^2*18+\pi*50*2(\frac{2}{5})\frac{dr}{dt}\\0=2.88\pi+40\pi \frac{dr}{dt}\\40\pi \frac{dr}{dt}=-2.88\pi\\40 \frac{dr}{dt}=-2.88\\\frac{dr}{dt}=-2.88 \div 40\\\frac{dr}{dt}=-0.072 $ Inches per minute[/tex]
Therefore, the radius of the cord is reducing at a rate of 0.072 Inches per minute.