Which expression both gives the average rate of change of the function h(x)


Answer:
D
Step-by-step explanation:
The average rate of change of a function over an interval a ≤ x ≤ b is found by:
[tex]\frac{f(b)-f(a)}{b-a}[/tex]
Here, a is 0 and b is 3, so: [tex]\frac{f(3)-f(0)}{3-0}=\frac{f(3)-f(0)}{3}[/tex]
Just plug in 3 for the first term and 0 for the second term in the numerator:
- First term: [tex]\frac{1}{2} (3^{3+\frac{1}{2} })+3=\frac{1}{2} (3^{3\frac{1}{2} })+3[/tex]
- Second term: [tex]\frac{1}{2} (3^{0+\frac{1}{2} })+3=\frac{1}{2} (3^{\frac{1}{2} })+3[/tex]
So, the final answer is:
[tex]\frac{[\frac{1}{2} (3^{3\frac{1}{2} })+3]-[\frac{1}{2} (3^{\frac{1}{2} })+3]}{3}[/tex]
Thus, the answer is D.
Hope this helps!