Respuesta :
Answer:
(a) The value of P (0.41 < [tex]\hat p[/tex] < 0.53) is 0.6444.
(b) The value of P ([tex]\hat p[/tex] < 0.40) is 0.0049.
(c) The value of P ([tex]\hat p[/tex] > 0.49) is 0.9826.
Step-by-step explanation:
According to the Central limit theorem, if from an unknown population large samples of sizes n > 30, are selected and the sample proportion for each sample is computed then the sampling distribution of sample proportion follows a Normal distribution.
The mean of this sampling distribution of sample proportion is:
[tex]\mu_{\hat p}=p[/tex]
The standard deviation of this sampling distribution of sample proportion is:
[tex]\sigma_{\hat p}=\sqrt{\frac{p(1-p)}{n}}[/tex]
Given that: p = 0.46.
(a)
The sample size is n = 60 > 30. So the central limit theorem can be applied to approximate the sampling distribution of sample proportion by a Normal distribution.
Compute the value of P (0.41 < [tex]\hat p[/tex] < 0.53) as follows:
[tex]P(0.41<\hat p<0.53)=P(\frac{0.41-0.46}{\sqrt{\frac{0.46(1-0.46)}{60}}}<\frac{\hat p-\mu_{\hat p}}{\sigma_{\hat p}}< \frac{0.53-0.46}{\sqrt{\frac{0.46(1-0.46)}{60}}})[/tex]
[tex]=P(-0.78<Z<1.09)\\=P(Z<1.09)-P(Z<-0.78)\\=0.86214-0.21770\\=0.64444\\\approx0.6444[/tex]
Thus, the value of P (0.41 < [tex]\hat p[/tex] < 0.53) is 0.6444.
(b)
The sample size is n = 458 > 30. So the central limit theorem can be applied to approximate the sampling distribution of sample proportion by a Normal distribution.
Compute the value of P ([tex]\hat p[/tex] < 0.40) as follows:
[tex]P(\hat p<0.40)=P(\frac{\hat p-\mu_{\hat p}}{\sigma_{\hat p}}<\frac{0.40-0.46}{\sqrt{\frac{0.46(1-0.46)}{458}}})[/tex]
[tex]=P(Z<-2.58)\\=0.00494\\\approx 0.0049[/tex]
Thus, the value of P ([tex]\hat p[/tex] < 0.40) is 0.0049.
(c)
The sample size is n = 1350 > 30. So the central limit theorem can be applied to approximate the sampling distribution of sample proportion by a Normal distribution.
Compute the value of P ([tex]\hat p[/tex] > 0.49) as follows:
[tex]P(\hat p>0.49)=P(\frac{\hat p-\mu_{\hat p}}{\sigma_{\hat p}}>\frac{0.49-0.46}{\sqrt{\frac{0.46(1-0.46)}{1350}}})[/tex]
[tex]=P(Z<2.11)\\=0.98257\\\approx 0.9826[/tex]
Thus, the value of P ([tex]\hat p[/tex] > 0.49) is 0.9826.
*Use a z-table for all the probability.