Answer:
The 95% confidence interval for the measurements is [48.106, 53.494].
Step-by-step explanation:
The average M of this sample is
[tex]M=\dfrac{1}{5}\sum_{i=1}^5x_i=\dfrac{1}{5}(52+48+49+52+53)\\\\\\M=\dfrac{254}{5}=50.800[/tex]
The standard deviation s of this sample is
[tex]s=\sqrt{\dfrac{1}{(n-1)}\sum_{i=1}^5(x_i-M)^2}[/tex]
[tex]s=\sqrt{\dfrac{1}{4}\cdot [(52-50.8)^2+(48-50.8)^2+(49-50.8)^2+(52-50.8)^2+(53-50.8)^2]}[/tex]
[tex]s=\sqrt{\dfrac{1}{4}\cdot [(1.44)+(7.84)+(3.24)+(1.44)+(4.84)]}=\sqrt{\dfrac{18.8}{4}}=\sqrt{4.7}\\\\\\s=2.168[/tex]
The degrees of freedom are
[tex]df=n-1=5-1=4[/tex]
Then, the critical value of t for a 95% CI and 4 degrees of freedom is t=2.776.
The margin of error of the CI is:
[tex]E=t\cdot s/\sqrt{n}=2.776\cdot 2.17/\sqrt{5}=6.024/2.236=2.694[/tex]
Then, the lower and upper bounds of the CI are:
[tex]LL=50.800-2.694=48.106\\\\UL=50.800+2.694=53.494[/tex]
The 95% confidence interval for the measurements is [48.106, 53.494].