Respuesta :
Answer:
95% confidence interval estimate of μ, the mean procrastination scale for second-year students at this terval college is [39.34 , 42.66].
Step-by-step explanation:
We are given that for the 69 second-year students in the study at the university, the sample mean procrastination score was 41.00 and the sample standard deviation was 6.89.
Firstly, the pivotal quantity for 95% confidence interval for the true mean is given by;
P.Q. = [tex]\frac{\bar X -\mu}{\frac{s}{\sqrt{n} } }[/tex] ~ [tex]t_n_-_1[/tex]
where, [tex]\bar X[/tex] = sample mean procrastination score = 41
s = sample standard deviation = 6.89
n = sample of students = 69
[tex]\mu[/tex] = population mean estimate
Here for constructing 95% confidence interval we have used One-sample t test statistics because we don't know about population standard deviation.
So, 95% confidence interval for the true mean, [tex]\mu[/tex] is ;
P(-1.9973 < [tex]t_6_8[/tex] < 1.9973) = 0.95 {As the critical value of t at 68 degree
of freedom are -1.9973 & 1.9973 with P = 2.5%}
P(-1.9973 < [tex]\frac{\bar X -\mu}{\frac{s}{\sqrt{n} } }[/tex] < 1.9973) = 0.95
P( [tex]-1.9973 \times{\frac{s}{\sqrt{n} } }[/tex] < [tex]{\bar X -\mu}[/tex] < [tex]1.9973 \times{\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
P( [tex]\bar X-1.9973 \times{\frac{s}{\sqrt{n} } }[/tex] < [tex]\mu[/tex] < [tex]\bar X+1.9973 \times{\frac{s}{\sqrt{n} } }[/tex] ) = 0.95
95% confidence interval for [tex]\mu[/tex] =[[tex]\bar X-1.9973 \times{\frac{s}{\sqrt{n} } }[/tex] , [tex]\bar X+1.9973 \times{\frac{s}{\sqrt{n} } }[/tex]]
= [ [tex]41-1.9973 \times{\frac{6.89}{\sqrt{69} } }[/tex] , [tex]41+1.9973 \times{\frac{6.89}{\sqrt{69} } }[/tex] ]
= [39.34 , 42.66]
Therefore, 95% confidence interval estimate of μ, the mean procrastination scale for second-year students at this terval college is [39.34 , 42.66].
Otras preguntas
