Answer:2.103 m/s
Explanation:
Given
mass of sports car [tex]m=930\ kg[/tex]
mass of SUV [tex]M=2000\ kg[/tex]
Suppose u is the velocity if sports car before collision
Conserving momentum we get
[tex]mu=(M+m)v[/tex]
[tex]v=\dfrac{2000+930}{930}\times u[/tex]
[tex]v=3.15\cdot u[/tex]
After collision the combined mass drag 2.8 m and finally stops
From work energy theorem work done by friction is equal to change in kinetic energy of the combined mass system
[tex]\frac{1}{2}(M+m)v^2=\mu (M+m)gx[/tex]
where [tex]\mu =\text{coefficient of friction}[/tex]
[tex]x=\text{drag distance}[/tex]
[tex]v=\sqrt{2\mu gx}[/tex]
[tex]v=\sqrt{2\times 0.8\times 9.8\times 2.8}[/tex]
[tex]v=6.626\ m/s[/tex]
Initial velocity [tex]u=\frac{6.626}{3.15}[/tex]
[tex]u=2.103\ m/s[/tex]