Respuesta :
Answer:
- 379.48 s ( specific impulse )
- 3678.75 m/s ( exit velocity )
- 263.21 kg/s ( mass flow )
- 979855.3 N ( thrust )
- 0.168 [tex]m^{2}[/tex] ( throat area )
Explanation:
A) Specific impulse
standard altitude = 25 km
take free steam pressure ( [tex]p_{0}[/tex] ) = 2527.3 N/[tex]m^{2}[/tex]
Exit pressure = ambient pressure. therefore exit pressure ( [tex]p_{e}[/tex] ) = 2527.3 N/[tex]m^{2}[/tex]
Applying specific impulse equation
[tex]I_{sp}[/tex] = [tex]\frac{1}{g_{0} }[/tex] [ [tex]\frac{2Y T_{0} }{Y - 1} (\frac{R}{M} )[ 1 - (\frac{P_{e} }{p_{0} })^{\frac{y-1}{1} } ]]^{\frac{1}{2} }[/tex] equation 1
given
[tex]g_{0}[/tex] = 9.81 m/[tex]s^{2}[/tex] , M = 20 kg/kmol, R = 8314.47 j/kmol.k
y = 1.18, [tex]T_{0}[/tex] = 3756 k, [tex]p_{e }[/tex] = 2527.3 N/[tex]m^{2}[/tex], [tex]p_{0}[/tex] = 30 atm
substitute the given data into equation 1
[tex]I_{sp}[/tex] ( specific impulse ) = 379.48 s
B) exit velocity
Relating the equation for isentropic process, pressure and temperature at the combustion chamber , the exit temperature (Te) can be calculated using this formula :
[tex]\frac{p_{e} }{p_{0} }[/tex] = [tex](\frac{T_{e} }{T_{0} })^{\frac{y}{y-1} }[/tex]
SUBSTITUTE the value of the above parameters
make (Te) subject of the equation Te = 1273.11 k
next calculate for constant specific pressure ( Cp )
Cp = [tex]\frac{y}{y-1}( \frac{R}{M})[/tex]
substitute the value of the above parameters into the equation
Cp = 2725.3 J/kg.k
Finally with Te and Cp known calculate the exit velocity
Ve = [tex]\sqrt{2Cp(To - Te)}[/tex]
Cp = 2725.3 J/kg.k
To = 3756 k
Te = 1273.11 k
substitute the given values into the equation
Ve = 3678.75 m/s ( exit velocity )
C ) Mass flow
firstly calculate the density of the gas at exit ( De )
De = [tex]\frac{Pe}{(\frac{R}{M}) } Te[/tex]
substituting the values of the parameters into the equation
De ( density of gas at exit ) = 0.00477 kg/m[tex]^{3}[/tex]
finally calculate the Mass flow at the exit
[tex]m_{e}[/tex] = De*Ve*Ae
De = 0.00477 kg/[tex]m^{3}[/tex]
Ve = 3678.75 m/s
Ae = 15 [tex]m^{2}[/tex]
therefore [tex]m_{e}[/tex] = 263.21 kg/s
D ) thrust
calculate the weight flow rate rate ( w ) firstly
w = mg ( mass flow * speed of gravity )
= 263.21 * 9.81 = 2582.1 N/s
finally calculate thrust by applying this equation for thrust
T ( thrust ) = specific impulse * weight flow rate
= 379.48 * 2582. 1 = 979855.3 N
E ) throat area
calculate the throat area using this equation
m = [tex]\frac{PoA}{\sqrt{To} } \sqrt{\frac{y}{(\frac{R}{M} }) } (\frac{2}{y+1} )^{\frac{(Y+1)}{(y-1)} }[/tex]
substituting the values of : m , M , R, To, y, and Po into the equation and making A subject of the equation
A = [tex]\frac{263.21 kg/s}{1568.1\sqrt{N.kg /m^{2} \sqrt{m} } }[/tex] = 0.168 [tex]m^{2}[/tex] ( throat area )