Answer:
[tex][16-9\sqrt{3}]\pi[/tex]
Step-by-step explanation:
[tex]\int\limits^1_0\int\limits^\pi_0 \int\limits^\frac{\pi}{6}_0 {48\rho Sin^{3}\phi } \, d \phi d\theta d\rho[/tex]
splitting it we have
[tex]48 [\int\limits^1_0 {\rho} \, d\rho ] [\int\limits^\pi_0 {1} \, d\theta ] [\int\limits^\frac{\pi}{6} _0 {Sin^{3} \phi } \, d\phi ][/tex]
integrating them separately we have;
[tex]48 [\frac{\rho^2}{2} ]^1_0 [\theta]^\pi_0 [\frac{1}{3} Cos^{3}\phi - Cos\phi + C ]^\frac{\pi}{6}_0[/tex]
substituting and evaluating respectively we have;
[tex]48 [\frac{1}{2} ] [\pi] [\frac{-3\sqrt{3} }{8} + \frac{2}{3} ][/tex]
Simplifying we have;
[tex][16-9\sqrt{3}]\pi[/tex]
∴ [tex]\int\limits^1_0\int\limits^\pi_0 \int\limits^\frac{\pi}{6}_0 {48\rho Sin^{3}\phi } \, d \phi d\theta d\rho[/tex] = [tex][16-9\sqrt{3}]\pi[/tex]