Answer:
[tex]\mu_{Vf}-\mu_{Vi}=-3*10^{-21} J/mol[/tex]
Explanation:
Let's rewrite F in terms of N.
[tex]F=32NkT+C-T(Nkln(V-bN)+C)[/tex]
[tex]F=32NkT+C-TNk\ln{(V-bN)}-TC[/tex]
C is a constant value.
We know that the chemical potential μ is the partial derivative of F with respect to N.
[tex]\frac{\partial F}{\partial N}=32kT-Tk(ln(V-bN)+\frac{N}{V−bN}(-b))[/tex]
[tex]\frac{\partial F}{\partial N}=kT(32-(ln(V-bN)+\frac{N}{V−bN}(-b)))[/tex]
[tex]\frac{\partial F}{\partial N}=kT(32-ln(V-bN)+\frac{Nb}{V−bN})[/tex]
We can find now the chemical potential μ(Vf).
[tex]\mu_{Vf}=kT(32-ln(Vf-bN)+\frac{Nb}{Vf−bN})[/tex]
[tex]\mu_{Vf}=1.38*10^{-23}*300*(32-ln(0.02-(9*10^{-29}*20*6.022*10^{23}))+\frac{20*6.022*10^{23}*9*10^{-29}}{0.02-(9*10^{-29}*20*6.022*10^{23}}))[/tex]
[tex]\mu_{Vf}= 1.49*10^{-19} J/mol[/tex]
We can do the same to find μ(Vi).
[tex]\mu_{Vi}=1.38*10^{-23}*300*(32-ln(0.01-(9*10^{-29}*20*6.022*10^{23}))+\frac{20*6.022*10^{23}*9*10^{-29}}{0.01-(9*10^{-29}*20*6.022*10^{23}}))[/tex]
[tex]\mu_{Vi}=1.52*10^{-19} J/mol[/tex]
Therefore µ(Vf) - µ(Vi) will be:
[tex]\mu_{Vf}-\mu_{Vi}=-3*10^{-21} J/mol[/tex]
I hope it helps you!