Respuesta :
Answer:
[tex]n=\frac{0.5(1-0.5)}{(\frac{0.04}{1.64})^2}=420.25[/tex]
And rounded up we have that n=421
Step-by-step explanation:
We know that the sample proportion have the following distribution:
[tex]\hat p \sim N(p,\sqrt{\frac{p(1-p)}{n}})[/tex]
In order to find the critical value we need to take in count that we are finding the interval for a proportion, so on this case we need to use the z distribution. Since our interval is at 90% of confidence, our significance level would be given by [tex]\alpha=1-0.90=0.1[/tex] and [tex]\alpha/2 =0.05[/tex]. And the critical value would be given by:
[tex]z_{\alpha/2}=-1.64, z_{1-\alpha/2}=1.64[/tex]
The margin of error for the proportion interval is given by this formula:
[tex] ME=z_{\alpha/2}\sqrt{\frac{\hat p (1-\hat p)}{n}}[/tex] (a)
And on this case we have that [tex]ME =\pm 0.04[/tex] and we are interested in order to find the value of n, if we solve n from equation (a) we got:
[tex]n=\frac{\hat p (1-\hat p)}{(\frac{ME}{z})^2}[/tex] (b)
We assume that a prior estimation for p would be [tex]\hat p =0.5[/tex] since we don't have any other info provided. And replacing into equation (b) the values from part a we got:
[tex]n=\frac{0.5(1-0.5)}{(\frac{0.04}{1.64})^2}=420.25[/tex]
And rounded up we have that n=421