Respuesta :

5/13 because it the right answer 

Answer:

option (c) is correct.

[tex]\sin x=\dfrac{12}{13}[/tex]

Step-by-step explanation:

Given a triangle  with base 12 cm , perpendicular = 5 cm and hypotenuse = 13 cm

We have to find the value of sin x° and choose the correct option.

Lets first name the given triangle as ΔABC, as shown in figure below.

We know the value of trigonometric ratio sine is ,

[tex]\sin\theta=\dfrac{Perpendicular}{Hypotenuse}[/tex]

Here, [tex]\theta=x[/tex]

and for x to be angle, perpendicular is AB and hypotenuse is AC.

[tex]\sin x=\dfrac{AB}{AC}[/tex]

Substitute the values, we get,

[tex]\sin x=\dfrac{12}{13}[/tex]

Thus, option (c) is correct.

Ver imagen athleticregina