Respuesta :

ratio = A_ABC / A_BDCA = r^2/2 / 3/4(π)r^2 = 4 / 6π = 2 / 3π = 0.21 

Answer:

[tex]\text{The ratio is }\frac{7}{33}=0.212...[/tex]

Step-by-step explanation:

Given the circle with radius r

we have to find the ratio of the area of triangle ABC to the area of sector BDCA .

[tex]\text{Area of triangle ABC=}\frac{1}{2}\times base\times height[/tex]

[tex]=\frac{1}{2}\times r\times r=\frac{1}{2}r^2[/tex]

[tex]\text{Area of sector BDCA=}\frac{\theta}{360}\times \pi r^2[/tex]

[tex]=\frac{270}{360}\times \pi r^2[/tex]

[tex]Ratio=\frac{\text{area of triangle}}{\text{area of sector BDCA}}[/tex]

[tex]=\frac{\frac{1}{2}r^2}{\frac{270}{360}\times \pi r^2}=\frac{7}{33}[/tex]

[tex]\text{The ratio is }\frac{7}{33}=0.212...[/tex]