Respuesta :
Answer: V = [tex]\frac{34}{45} \pi[/tex]
Explanation:
In the given system of coordinates OXY, the region R₃ is bounded by two functions:
y₁ = [tex]2\sqrt[4]{x}[/tex] (green line)
y₂ = 2x (blu line)
in the intervals:
0 ≤ x ≤ 1
0 ≤ y ≤ 2
We need to find the volume of this region rotated about the line AB, which is x = 1. In order to do so, we need to change system of coordinates, such as the rotation is about the y-axis, therefore we need to perform a translation:
[tex]\left \{ {{X=x+1} \atop {Y=y}} \right.[/tex]
After the translation R₃ will be bounded by:
y₁ = [tex]2\sqrt[4]{x+1}[/tex]
y₂ = 2x + 2
in the intervals:
-1 ≤ x ≤ 0
0 ≤ y ≤ 2
At this point, we can use the washer method (see picture attached). The general formula is:
A = π(R² - r²)
where:
A = area
R = outer radius of a washer
r = inner radius of a washer
Since the radii are x-values which vary with the height, represented by the y-values, we need to write the inverse functions:
[tex]R: x_{1} = \frac{1}{16} y^{4} - 1 \\ r: x_{2} = \frac{1}{2} y - 1[/tex]
[Note: I used the curves on the left side of the graph, but you could find the ones representing the right side of the graph and use those]
Now, we can find the function for the area of each washer:
[tex]A(y) = \pi [(\frac{1}{16}y^{4} - 1)^{2} - (\frac{1}{2}y - 1)^{2} ] \\ = \pi [\frac{1}{256}y^{8} - \frac{1}{8} y^{4} - \frac{1}{4} y^{2} + y ][/tex]
Therefore the volume of the region R₃ will be:
[tex] V = \int\limits^{y_{2}}_{y_{1}} {A(y)} \, dy [/tex]
[tex] = \int\limits^2_0 {\pi [\frac{1}{256}y^{8} - \frac{1}{8}y^{4} - \frac{1}{4} y^{2} + y] } \, dy [/tex]
[tex] = \pi [ \frac{1}{2304}y^{9} - \frac{1}{40}y^{5} - \frac{1}{12} y^{3} + \frac{1}{2} y^{2}]^{2}_{0} [/tex]
[tex] = \frac{34}{45} \pi [/tex]
The volume generated by the region [tex]R_{3}[/tex] about AB is [tex]\boxed{\bf \dfrac{34\pi}{45}}[/tex].
Further explanation:
Formula used:
The volume genreated by region [tex]R_{3}[/tex] about AB can be obtained by the formula:
[tex]\boxed{V=\int\limits_a^b{\pi\left({{r_1}^2-r_2^2}\right)dy}}[/tex] …… (1)
Here, [tex]V[/tex] is the volume of the region, [tex]r_{1}[/tex] is the outer radius and [tex]r_{2}[/tex] is the inner radius.
Calculation:
According to the Washer method integrate along the axis parallel to the Axis of the rotation.
Here, [tex]R_{3}[/tex] is rotated about AB, then the axis of the rotation is [tex]x=1[/tex].
The outer radius [tex]r_{1}[/tex] is the distance from the curve [tex]x=\frac{y^{4}}{16}[/tex] to the axis of rotaion [tex]x=1[/tex].
[tex]\boxed{r_{1}= 1-\frac{{{y^4}}}{{16}}}[/tex]
The inner radius [tex]r_{2}[/tex] is the distance from the curve [tex]x=y[/tex] to tha axis of rotaion is [tex]x=1[/tex].
[tex]\boxed{r_{2}=1-y }[/tex]
Substitute [tex](1-y)[/tex] for [tex]r_{2}[/tex] and [tex]1-\frac{y^{4}}{16}[/tex] for [tex]r_{1}[/tex], [tex]2[/tex] for [tex]b[/tex] and [tex]0[/tex] for [tex]a[/tex] in equation (1) to obtain the volume generated by [tex]R_{3}[/tex] about AB.
[tex]\begin{aligned}V&=\int\limits_0^2{\pi\left({{{\left({1-\frac{{{y^4}}}{{16}}}\right)}^2}-{{\left({1-y}\right)}^2}} \right)dy}\\&=\int\limits_0^2{\pi\left({\left({1+\frac{{{y^8}}}{{256}}-2\left({\frac{{{y^4}}}{{16}}}\right)1}\right)-\left({1+{y^2}-2y}\right)}\right)}dy\\&=\int\limits_0^2{\pi\left({\left( {1+\frac{{{y^8}}}{{256}}-\left({\frac{{{y^4}}}{8}}\right)}\right)-\left({1+{y^2}-2y}\right)} \right)}dy\end{aligned}[/tex]
Further solve the above equation as follows:
[tex]\begin{aligned}V&=\int\limits_0^2{\pi\left({\left({\frac{{{y^8}}}{{256}}-\left({\frac{{{y^4}}}{8}}\right)}\right)- \left({{y^2}-2y}\right)}\right)}dy\\&=\pi\left[{\frac{{{y^9}}}{{256\left(9\right)}}-\frac{{{y^5}}}{{5\left(8\right)}}-\frac{{{y^3}}}{3}+\frac{{2{y^2}}}{2}}\right]_0^2\\&=\pi\left[{\frac{{{2^9}}}{{256\left(9 \right)}}-\frac{{{2^5}}}{{5\left(8\right)}}-\frac{{{2^3}}}{3}+4}\right]\\&=\pi\left[{\frac{2}{9}-\frac{4}{5}-\frac{8}{3}+4}\right]\\&=\dfrac{34\pi}{45}\end{aligned}[/tex]
Therefore, the volume generated by the region [tex]R_{3}[/tex] about AB is [tex]\boxed{\bf \dfrac{34\pi}{45}}[/tex].
Learn more:
1. Simplification: https://brainly.com/question/1602237
2. Quadratic equation: https://brainly.com/question/1332667
Answer details:
Grade: College
Subject: Mathematics
Chapter: Calculus
Keywords: Integration, volume, dy, inner radius, outer radius, rotation, axis, x-axis, y-axis, coordinate, generated by the curve.