[tex]-\sqrt{2}sec(x) = 2[/tex] {0° ≤ x ≤ 360°}
[tex]\frac{-\sqrt{2}sec(x)}{-\sqrt{2}} = \frac{2}{-\sqrt{2}}[/tex]
[tex]sec(x) = -\frac{2}{\sqrt{2}}[/tex]
[tex]sec(x) = -\frac{2}{\sqrt{2}} * \frac{\sqrt{2}}{\sqrt{2}}[/tex]
[tex]sec(x) = -\frac{2\sqrt{2}}{2}[/tex]
[tex]sec(x) = -\sqrt{2}[/tex]
[tex]sec^{-1}(sec(x)) = sec^{-1}(-\sqrt{2})[/tex]
[tex]x = \frac{1}{cos(-\sqrt{2})}[/tex]
[tex]x = \frac{1}{cos^{-1}(\sqrt{2})}[/tex]
[tex]x = sec^{-1}(\sqrt{2})[/tex]
[tex]x = 135\°, 225\°[/tex]
The answer is 3.
c² = a² + b²
17² = 8² + b²
289 = 64 + b²
- 64 - 64
225 = b²
15 = b
[tex]cos(x) = \frac{15}{17} = [/tex]
[tex]cos^{-1}(cos(x)) = cos^{-1}(\frac{15}{17})[/tex]
[tex]x = 28.07248694[/tex]
[tex]28.07248694 = 28\°4'20.95" \approx 28\°4'[/tex]
The answer is 2.