Respuesta :
We substitute the point of intesection (1, 2) into the given options to see that only -x + 3 = 3x - 1 satisfies the graphs.
i.e. -x + 3 = -1 + 3 = 2
3x - 1 = 3(1) - 1 = 3 - 1 = 2.
i.e. -x + 3 = -1 + 3 = 2
3x - 1 = 3(1) - 1 = 3 - 1 = 2.
Answer:
The correct option is 3.
Step-by-step explanation:
It is given that two linear graphs intersect at (1,2). It means the solution of both lines is x=1 and y=2.
The equation which is satisfied by x=1 will be the required equation.
In option (1),
[tex]x+4=-2x-1[/tex]
Substitute x=1.
[tex](1)+4=-2(1)-1[/tex]
[tex]5\neq -3[/tex]
Option 1 is incorrect.
In option (2),
[tex]x+2=-3x+1[/tex]
Substitute x=1.
[tex](1)+2=-3(1)+1[/tex]
[tex]3\neq -2[/tex]
Option 2 is incorrect.
In option (3),
[tex]-x+3=3x-1[/tex]
Substitute x=1.
[tex]-(1)+3=3(1)-1[/tex]
[tex]2=2[/tex]
Option 3 is correct.
In option (1),
[tex]x+3=2x-1[/tex]
Substitute x=1.
[tex](1)+3=2(1)-1[/tex]
[tex]4\neq 1[/tex]
Option 4 is incorrect.
Therefore the correct option is 3.