Respuesta :
Answer:
[tex]\displaystyle \int\limits^{6}_{1} {525600(0.42t^2 + 2.7t - 1)} \, dt \approx 38000000[/tex]
General Formulas and Concepts:
Calculus
Integration
- Integrals
Integration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle v(t) = 525600(0.42t^2 + 2.7t - 1) ,\ 0.5 \leq t \leq 7[/tex]
Step 2: Find
- Set up: [tex]\displaystyle \int\limits^{6}_{1} {525600(0.42t^2 + 2.7t - 1)} \, dt[/tex]
- [Integral] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^{6}_{1} {525600(0.42t^2 + 2.7t - 1)} \, dt = 525600\int\limits^{6}_{1} {(0.42t^2 + 2.7t - 1)} \, dt[/tex]
- [Integral] Rewrite [Integration Property - Addition/Subtraction]: [tex]\displaystyle \int\limits^{6}_{1} {525600(0.42t^2 + 2.7t - 1)} \, dt = 525600 \bigg( \int\limits^{6}_{1} {0.42t^2} \, dt + \int\limits^{6}_{1} {2.7t} \, dt - \int\limits^{6}_{1} {1} \, dt \bigg)[/tex]
- [Integrals] Rewrite [Integration Property - Multiplied Constant]: [tex]\displaystyle \int\limits^{6}_{1} {525600(0.42t^2 + 2.7t - 1)} \, dt = 525600 \bigg( 0.42\int\limits^{6}_{1} {t^2} \, dt + 2.7\int\limits^{6}_{1} {t} \, dt - \int\limits^{6}_{1} {} \, dt \bigg)[/tex]
- [Integrals] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle \int\limits^{6}_{1} {525600(0.42t^2 + 2.7t - 1)} \, dt = 525600 \bigg[ 0.42 \bigg( \frac{t^3}{3} \bigg) \bigg| \limits^{6}_{1} + 2.7 \bigg( \frac{t^2}{2} \bigg) \bigg| \limits^{6}_{1} - t \bigg| \limits^{6}_{1} \bigg][/tex]
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^{6.5}_{1.5} {525600(0.42t^2 + 2.7t - 1)} \, dt = 525600 \bigg[ 0.42 \bigg( \frac{215}{3} \bigg) + 2.7 \bigg( \frac{35}{2} \bigg) - 5 \bigg][/tex]
- Simplify: [tex]\displaystyle \int\limits^{6}_{1} {525600(0.42t^2 + 2.7t - 1)} \, dt = 38027160[/tex]
- Round: [tex]\displaystyle \int\limits^{6}_{1} {525600(0.42t^2 + 2.7t - 1)} \, dt \approx 38000000[/tex]
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration