The Figure Shows a curve C and a contour map of a function whose gradient is continuous. Integral in region C Nabla F dot dr

The Figure Shows a curve C and a contour map of a function whose gradient is continuous Integral in region C Nabla F dot dr class=

Respuesta :

Given figures along the curve of C are: 10, 20, 30, 40, 50

∫c  Nabla f * dr ⇒ f(B)−f(A)= 50 − 10 = 40

Answer:

The value of [tex]\int _C\bigtriangledown f\cdot dr[/tex] is 40.

Step-by-step explanation:

It is given that the gradient of function is continuous.

By fundamental theorem for line integrals,

[tex]\int _C\bigtriangledown f\cdot dr=f(Q)-f(P)[/tex]

Where, C starts from P and end at the point Q.

We have to find the value of [tex]\int _C\bigtriangledown f\cdot dr[/tex].

The function is defined from contour line 10 to contour line 50.

[tex]\int _C\bigtriangledown f\cdot dr=50-10[/tex]

[tex]\int _C\bigtriangledown f\cdot dr=40[/tex]

Therefore the value of [tex]\int _C\bigtriangledown f\cdot dr[/tex] is 40.