Respuesta :

[tex]3cos(\theta) = -0.862[/tex]
[tex]\frac{3cos(\theta)}{3} = \frac{-0.862}{3}[/tex]
[tex]cos(\theta) = -\frac{431}{1500}[/tex]
[tex]cos^{-1}[cos(\theta)] = cos^{-1}(-\frac{431}{1500})[/tex]
[tex]\theta = 106.6983737\°[/tex]
[tex]\theta = 1.86223792^{r}[/tex]

The measure of angles can be expressed in degrees or radians

The solution of [tex]\mathbf{3cos(\theta) = -0.862}[/tex] is [tex]\mathbf{\theta = 1.86\ rad}[/tex]

The equation is given as:

[tex]\mathbf{3cos(\theta) = -0.862}[/tex]

Divide both sides of the equation by 3

[tex]\mathbf{cos(\theta) = -0.2873}[/tex]

Take arccos of both sides

[tex]\mathbf{cos^{-1}(cos(\theta)) = cos^{-1}(-0.2873)}[/tex]

Simplify the left-hand side

[tex]\mathbf{\theta = cos^{-1}(-0.2873)}[/tex]

Using a calculator, take the arccos of the right-hand side, in radians

[tex]\mathbf{\theta = 1.86\ rad}[/tex]

Hence, the solution of [tex]\mathbf{3cos(\theta) = -0.862}[/tex] is [tex]\mathbf{\theta = 1.86\ rad}[/tex]

Read more about cosine at:

https://brainly.com/question/2289063