Answer:
The correct option is: B that is 1/2 K
Explanation:
Given:
Two carts of different masses, same force were applied for same duration of time.
Mass of the lighter cart = [tex]m[/tex]
Mass of the heavier cart = [tex]2m[/tex]
We have to find the relationship between their kinetic energy:
Let the KE of cart having mass m be "K".
and KE of cart having mass m be "K1".
As it is given regarding Force and time so we have to bring in picture the concept of momentum Δp and find a relation with KE.
Numerical analysis.
⇒ [tex]KE = \frac{mv^2}{2}[/tex]
⇒ [tex]KE = \frac{mv^2}{2}\times \frac{m}{m}[/tex]
⇒ [tex]KE = \frac{m^2v^2}{2}\times \frac{1}{m}[/tex]
⇒ [tex]KE = \frac{(mv)^2}{2}\times \frac{1}{m}[/tex]
⇒ [tex]KE = \frac{(\triangle p)^2}{2}\times \frac{1}{m}[/tex]
⇒ [tex]KE = \frac{(\triangle p)^2}{2m}=\frac{(F\times t)^2}{2m}[/tex]
Now,
Kinetic energies and their ratios in terms of momentum or impulse.
KE (K) of mass m.
⇒ [tex]K=\frac{(F\times t)^2}{2m}[/tex] ...equation (i)
KE (K1) of mass 2m.
⇒ [tex]K_1=\frac{(F\times t)^2}{2\times 2m}[/tex]
⇒ [tex]K_1=\frac{(F\times t)^2}{4m}[/tex] ...equation (ii)
Lets divide K1 and K to find the relationship between the two carts's KE.
⇒ [tex]\frac{K_1}{K} =\frac{(F\times t)^2}{4m} \times \frac{2m}{(F\times t)^2}[/tex]
⇒ [tex]\frac{K_1}{K} =\frac{2m}{4m}[/tex]
⇒ [tex]\frac{K_1}{K} =\frac{2}{4}[/tex]
⇒ [tex]\frac{K_1}{K} =\frac{1}{2}[/tex]
⇒ [tex]K_1=\frac{K}{2}[/tex]
⇒ [tex]K_1=\frac{1}{2}K[/tex]
The kinetic energy of the heavy cart after the push compared to the kinetic energy of the light cart is 1/2 K.