Respuesta :
Answer:
91.87m
Step-by-step explanation:
We are given that
BC=361 m
Angle B=[tex]111^{\circ}20'=111+\frac{20}{60}=111.33^{\circ}[/tex]
1 degree= 60 minute
Angle C=[tex]12^{\circ} 15'=12+\frac{15}{60}=12.25^{\circ}[/tex]
We have to find the value of AB.
Sum of angles of triangle=180 degrees
[tex]\angle A+\angle B+\angle C=180[/tex]
[tex]\angle A=180-(\angle C+\angle B)=180-(111.33+12.25)=56.42^{\circ}[/tex]
By using law of sine
[tex]\frac{AB}{sin C}=\frac{BC}{sin A}[/tex]
[tex]AB=\frac{BCsin C}{sin A}=\frac{361 sin 12.25^{\circ}}{sin 56.42^{\circ}}[/tex]
[tex]AB=91.87 m[/tex]
The distance AB across the river is approximately 92 m.
The sum of angles in a triangle equals 180°. Therefore,
∠B = 111 degrees 20 minutes = 111.33°
∠C = 12 degrees 15 minutes = 12.25°
Therefore,
∠A + ∠B + ∠C = 180°
∠A + 111.33° + 12.25° = 180
∠A = 180 - 12.25 + 111.33
∠A = 56.42°
AB = ?
BC = 361 m
Using sine rule,
AB / sin 12.25 = 361 / sin 56. 42
cross multiply
AB sin 56. 42 = 361 sin 12.25
AB = 76.5961396485 / 0.83098446927
AB = 92.1751759276
AB ≈ 92 m
read more: https://brainly.com/question/24217473?referrer=searchResults