Respuesta :
Answer:
7) d)
standard error of the mean of one sample of 'n' observation = 0.20
8) a)
The margin of Error = 0.392
9) d
The 95% of confidence intervals are (8.61 , 9.39)
Step-by-step explanation:
7)
solution:-
The Given data sample size 'n' = 81
Given Population standard deviation 'σ' = 1.8 hours
The standard error of the mean of one sample of 'n' observation is
Standard error (SE)
= [tex]\frac{S.D}{\sqrt{n} }[/tex]
= σ / √n
= [tex]\frac{1.8}{\sqrt{81} } =0.2[/tex]
standard error of the mean of one sample of 'n' observation = 0.20
8)
Solution:-
The Given data sample size 'n' = 81
Given Population standard deviation 'σ' = 1.8 hours
Given the probability is 0.95
The z- score = 1.96 at 0.05 level of significance.
The margin of Error = [tex]\frac{z_{0.95} S.D}{\sqrt{n} }[/tex]
= [tex]\frac{1.96 (S.D)}{\sqrt{n} }[/tex]
= [tex]\frac{1.96 (1.8)}{\sqrt{81} }[/tex]
= 0.392
The margin of Error = 0.392
9)
Solution:-
The 95% of confidence intervals are
[tex](x^{-} - 1.96\frac{S.D}{\sqrt{n} } , x^{-} + 1.96\frac{S.D}{\sqrt{n} } )[/tex]
[tex](9 - 1.96\frac{1.8}{\sqrt{81} } , 9+ 1.96\frac{1.8}{\sqrt{81} } )[/tex]
(9 - 0.392 , (9 + 0.392)
(8.609 , 9.392)
The 95% of confidence intervals are (8.61 , 9.39)