Answer:
ln(2) +3ln(a) -4ln(b)
Step-by-step explanation:
[tex]\ln{\left(\dfrac{2a^3}{b^4}\right)}=\ln{(2a^3b^{-4})}=\ln{(2)}+\ln{(a^3)}+\ln{(b^{-4})}\\\\=\boxed{\ln{(2)}+3\ln{(a)}-4\ln{(b)}}[/tex]
__
The applicable rules of logarithms are ...
log(ab) = log(a)+log(b)
log(a^b) = b·log(a)