Answer:
The number of surveys needed to be collected is 152.
Step-by-step explanation:
The (1 - α)% confidence interval for population proportion p is:
[tex]CI=\hat p \pm z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
The margin of error for this interval is:
[tex]MOE= z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
The information provided is:
[tex]\hat p=0.83\\MOE=0.05\\(1-\alpha )\%=89.9\%[/tex]
Compute the critical value of z for 89.9% confidence level as follows:
[tex]z_{\alpha/2}=z_{0.101/2}=z_{0.0505}=1.64[/tex]
*Use a z-table.
Compute the sample size value as follows:
[tex]MOE= z_{\alpha/2}\times \sqrt{\frac{\hat p(1-\hat p)}{n}}[/tex]
[tex]n=[\frac{z_{\alpha/2}\times \sqrt{\hat p(1-\hat p)}}{MOE}]^{2}[/tex]
[tex]=[\frac{1.64\times \sqrt{0.83(1-0.83)}}{0.05}]^{2}[/tex]
[tex]=151.801024\\\approx 152[/tex]
Thus, the number of surveys needed to be collected is 152.