Respuesta :

Given:

In the given ΔEFG,

EP = FP and GQ = FQ

Again,

EP = [tex]4y+2[/tex]

FP = [tex]2x[/tex]

FQ = [tex]3x-1[/tex]

GQ = [tex]4y+4[/tex]

PQ = [tex]x+2y[/tex]

To find the perimeter of ΔEFG.

Formula

  • The perimeter of a triangle is the sum of all the sides.
  • By Midpoint Theorem we get, a line segment joining the mid points of two sides of a triangle is parallel and half to the third side.

In this given triangle, EG║PQ and EG = [tex]\frac{1}{2}[/tex]PQ

Now,

By given condition,

[tex]2x = 4y+2[/tex] ----- (1)

[tex]3x-1 =4y+4[/tex]---------(2)

From (1) we get, [tex]4y = 2x-2[/tex]

Putting this value into (2) we get,

[tex]3x-1 = 2x-2+4[/tex]

or, [tex]x = 3[/tex]

From (1) we get,

[tex]4y = 2(3)-2[/tex]

or, [tex]4y = 4[/tex]

or, [tex]y = 1[/tex]

So,

EF = [tex]2x+4y+2[/tex] = [tex]2(3)+4(1)+2 = 12[/tex] unit

FG = [tex]3x-1+4y+4 = 3(3)-1+4(1)+4 = 16[/tex] unit

PQ =[tex]3+2(1) = 5[/tex] unit

EG = [tex]2(5) = 10[/tex] unit

The perimeter of ΔEFG = EF+FG+EG = 16+10+12 unit = 38 unit

Hence,

The perimeter of the given triangle is 38 unit.

The perimeter of the ΔEFG when EP = FP and GQ = FQ should be 38 units.

Calculation of the perimeter:

Since

EP = 4y + 2

FP = 2x

FQ = 3x - 1

GQ = 4y + 4

PQ = x + 2y

So,

2x = 4y +2 ..(1)

4x - 1 = 4y + 4........(2)

So,

3x - 1 = 2x - 2 + 4

y = 1

Now

= EF + FG + FG

= 16 + 10 + 12

= 38 units

hence, The perimeter of the ΔEFG when EP = FP and GQ = FQ should be 38 units.

Learn more about perimeter here: https://brainly.com/question/22176005

ACCESS MORE