Answer:
umax = 0.1259ft/s
Explanation:
Given:
•Distance between plates, B = 0.01ft
•Pressure difference decrease, [tex] \frac{dp}{dz}=60ps/ft[/tex]
•Fluid viscosity, u = 10^-³lbf-s/ft²
Specific gravity, S = 0.80
Max velocity in the z-direction will be:
[tex]u_max= [\frac{B^2y}{8u}]\frac{dh}{ds}[/tex]
[tex] But h = \frac{P}{y}+z[/tex]
Substituting for h in the first equation, we have:
[tex] \frac{d}{dz}[\frac{p}{y}+z][/tex]
[tex] \frac{dh}{dz}=\frac{1}{y}\frac{dp}{ds}+\frac{dz}{dz} [/tex]
[tex]= \frac{1}{0.8*62.4}(-60)+1[/tex]
= -0.20192
Substituting dh/dz value in the first equation (umax), we have:
[tex] umax = \frac{0.01^2(0.8*62.4)}{8*10^-^3}(-0.20192)[/tex]
umax = 0.1259ft/s