Answer:
(A)
[tex]P(X \geq 0.8) = \int\limits_{0.8}^{\infty} f(x) \, dx = \int\limits_{0.8}^{1} 1.25(1-x^4) \, dx = 0.08192[/tex]
(B)
Then the cumulative function would be
[tex]CF(x) = 1.25x - 0.25x^5[/tex] if 0<x<1
0 otherwise.
Step-by-step explanation:
(A)
We are looking for the probability that the random variable X is greater than 0.8.
[tex]P(X \geq 0.8) = \int\limits_{0.8}^{\infty} f(x) \, dx = \int\limits_{0.8}^{1} 1.25(1-x^4) \, dx = 0.08192[/tex]
(B)
For any [tex]x[/tex] you are looking for the probability [tex]P(X \geq x)[/tex] which is
[tex]P(X \geq x) = \int\limits_{-\infty}^{x} 1.25(1-t^4) dt = \int\limits_{0}^{x} 1.25(1-t^4) dt = 1.25x - 0.25x^2[/tex]
Then the cumulative function would be
[tex]CF(x) = 1.25x - 0.25x^5[/tex] if 0<x<1
0 otherwise.