Answer : The amount of heat required is, 2160 cal.
Explanation :
The process involved in this problem are :
[tex](1):H_2O(s)(0^oC)\rightarrow H_2O(l)(0^oC)\\\\(2):H_2O(l)(0^oC)\rightarrow H_2O(l)(100^oC)\\\\(3):H_2O(l)(100^oC)\rightarrow H_2O(g)(100^oC)[/tex]
The expression used will be:
[tex]Q=[m\times \Delta H_{fusion}]+[m\times c_{p,l}\times (T_{final}-T_{initial})]+[m\times \Delta H_{vap}][/tex]
where,
[tex]Q[/tex] = heat required for the reaction = ?
m = mass of ice = 3 g
[tex]c_{p,l}[/tex] = specific heat of liquid water = [tex]1cal/g^oC[/tex]
[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = [tex]80cal/g[/tex]
[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization = [tex]540cal/g[/tex]
Now put all the given values in the above expression, we get:
[tex]Q=[3g\times 80cal/g]+[3g\times 1cal/g^oC\times (100-0)^oC]+[3g\times 540cal/g][/tex]
[tex]Q=2160cal[/tex]
Therefore, the amount of heat required is, 2160 cal.