Respuesta :
The function models the distance from Mars.
Mars reaches the first 220 km after 214 days.
The function is given as:
[tex]\mathbf{M(t) = 21\ cos\left(\dfrac{2\pi}{687}t\right) + 228}[/tex]
When M(t) = 220, we have:
[tex]\mathbf{ 21\ cos\left(\dfrac{2\pi}{687}t\right) + 228 = 220}[/tex]
Subtract 228 from both sides
[tex]\mathbf{ 21\ cos\left(\dfrac{2\pi}{687}t\right) = -8}[/tex]
Divide both sides by 21
[tex]\mathbf{ cos\left(\dfrac{2\pi}{687}t\right) = -0.3810}[/tex]
Take arc cos of both sides
[tex]\mathbf{ \dfrac{2\pi}{687}t = 1.96}[/tex]
Multiply both sides by 687
[tex]\mathbf{ 2\pi t = 1346.52}[/tex]
Divide both sides by 2π
[tex]\mathbf{ t = 214.3}[/tex]
Approximate
[tex]\mathbf{ t = 214}[/tex]
Hence, Mars reaches the first 220 km after 214 days.
Read more about functions at:
https://brainly.com/question/24933055