Respuesta :

Given:

The length of the rectangle = 16 ft

The width of the rectangle = 12 ft

The diameter of the semicircle = 12 ft

To find the area of the given figure.

Formula

  • [tex]A=A_{1} +A_{2}[/tex]

where,

[tex]A[/tex] be the area of the given figure

[tex]A_{1}[/tex] be the area of the rectangle

[tex]A_{2}[/tex] be the area of the semicircle.

  • The area of the rectangle = [tex]lb[/tex] where, l be the length and b be the width
  • Area of the semicircle = [tex]\frac{1}{2} \pi r^{2}[/tex], r be the radius of the semicircle.

Now,

The radius of the semicircle r = 6 ft

Putting, r=6, l=16 and b= 12 we get,

[tex]A_{1} = (16)(12)[/tex] sq ft

or, [tex]A_{1} = 192[/tex] sq ft

[tex]A_{2} = \frac{1}{2} (3.14)(6^{2} )[/tex] sq ft

or, [tex]A_{2}=56.52[/tex] sq ft

So,

[tex]A = 56.52+192[/tex] sq ft

[tex]A[/tex] = 248.52 sq ft

Rounding off to the nearest tenth, we get;

A=248.5 sq ft.

Hence,

The area of the composite figure is 248.5 sq ft.

ACCESS MORE