Respuesta :
Answer:
Coordinates of the point on the directed line segment is (15/3,7/3)
Step-by-step explanation:
Given:
A line segment with coordinates partition in some ratio.
Lets say that the ends of the segment are A and B.
We have to find the coordinates of C.
Coordinates of point A are = (3,-1)
Coordinates of point B are = (9,8)
Considering the point C as (x,y) and the partition ratios as m:n i.e 1:2
Formula to be used:
Section formula:
- [tex]x= \frac{mx_2+n_x_1}{m+n},\ y=\frac{my_2+ny_1}{m+n}[/tex]
Using the above formula.
⇒ [tex]x= \frac{mx_2+n_x_1}{m+n},\ y=\frac{my_2+ny_1}{m+n}[/tex]
⇒ Plugging the values.
⇒ [tex]x= \frac{1(9)+2(3)}{1+2},\ y=\frac{1(8)+2(-1)}{1+2}[/tex]
⇒ [tex]x= \frac{9+6}{3},\ y=\frac{9-2}{3}[/tex]
⇒ [tex]x= \frac{15}{3},\ y=\frac{7}{3}[/tex] or
⇒ [tex]x= 5,\ y=2.3[/tex]
The coordinates of the point on the directed line segment is (15/3,7/3) in terms of decimals it is (5,2.3).

Otras preguntas
