Respuesta :
I will use the sin (a + b) identity:
sin (a + b) = sina cosb + cosa sinb and
here a = π/2 and b = π/7
so sin (π/2 + π/7)
= sin (9π / 14)
sin (a + b) = sina cosb + cosa sinb and
here a = π/2 and b = π/7
so sin (π/2 + π/7)
= sin (9π / 14)
Answer:
[tex]\text{sin}(\frac{9\pi}{14})[/tex].
Step-by-step explanation:
We have been given a trigonometric expression [tex]\text{sin}(\frac{\pi}{2})\text{cos}(\frac{\pi}{7})+\text{cos}(\frac{\pi}{2})\text{sin}(\frac{\pi}{7})[/tex]. We are asked to write our given expression as either the sine, cosine, or tangent of a single angle.
Using identity [tex]\text{sin}(a)\text{cos}(b)+\text{cos}(a)\text{sin}(b)=\text{sin}(a+b)[/tex], we can rewrite our given expression.
Let [tex]a=\frac{\pi}{2}[/tex] and [tex]b=\frac{\pi}{7}[/tex].
Upon substituting these values in above identity, we will get:
[tex]\text{sin}(\frac{\pi}{2})\text{cos}(\frac{\pi}{7})+\text{cos}(\frac{\pi}{2})\text{sin}(\frac{\pi}{7})=\text{sin}(\frac{\pi}{2}+\frac{\pi}{7})[/tex]
Upon simplifying right side of our equation, we will get:
[tex]\text{sin}(\frac{\pi}{2}+\frac{\pi}{7})=\text{sin}(\frac{\pi*7}{2*7}+\frac{\pi*2}{7*2})[/tex]
[tex]\text{sin}(\frac{\pi}{2}+\frac{\pi}{7})=\text{sin}(\frac{7\pi}{14}+\frac{2\pi}{14})[/tex]
[tex]\text{sin}(\frac{\pi}{2}+\frac{\pi}{7})=\text{sin}(\frac{7\pi+2\pi}{14})[/tex]
[tex]\text{sin}(\frac{\pi}{2}+\frac{\pi}{7})=\text{sin}(\frac{9\pi}{14})[/tex]
Therefore, our required expression would be [tex]\text{sin}(\frac{9\pi}{14})[/tex].
