Respuesta :

Given:

The interior angles of the triangle are 44°, 3t - 45° and x - 15°

The exterior angle of the triangle is 4t - 29°

We need to determine the value of x.

Value of t:

The value of t can be determined using the exterior angle theorem.

Applying the theorem, we have;

[tex]44+3t - 45=4t-29[/tex]

         [tex]3t - 1=4t-29[/tex]

        [tex]-t - 1=-29[/tex]

              [tex]-t=-28[/tex]

                [tex]t=28[/tex]

Thus, the value of t is 28.

Value of x:

The exterior angle 4t -29 and the interior angle x - 15 are linear pairs.

Since, linear pairs add up to 180°, we have;

[tex]4t-29+x-15=180[/tex]

Substituting t = 28, we get;

[tex]4(28)-29+x-15=180[/tex]

  [tex]112-29+x-15=180[/tex]

                   [tex]x+68=180[/tex]

                           [tex]x=112[/tex]

Thus, the value of x is 112.

ACCESS MORE
EDU ACCESS