Answer:
Step-by-step explanation:
2x - 1 =0
2x = 1
x = 1/2
Now We have to find P(1/2). If P(1/2) is zero, then 2x - 1 is a factor of P(x)
P(x)= x³ - x² + 2x -1
[tex]P(\frac{1}{2})=[\frac{1}{2}]^{3}-[\frac{1}{2}]^{2}+2*[\frac{1}{2}]-1\\\\=\frac{1}{8}-\frac{1}{4}+1-1\\\\=\frac{1}{8}-\frac{1*2}{4*2}+0\\\\=\frac{1}{8}-\frac{2}{8}\\\\=\frac{1-2}{8}\\\\=\frac{-1}{8}\neq 0[/tex]
2x - 1 is not a factor of p(x)