Respuesta :

2.167*10^22 atoms of hydrogen

Answer:

[tex]7.37\times 10^{19}[/tex] number of H atoms are present in 2.00 mg of aspartame

Explanation:

Molecular formula of aspartame is [tex]C_{14}H_{18}N_{2}O_{5}[/tex]

So, 1 molecule of aspartame contains 18 atoms of H

Molar mass of aspartame = 294.307 g/mol

Number of moles = (mass)/(molar mass)

So, 2.00 mg of aspartame = [tex]\frac{2.00\times 10^{-3}}{294.307}[/tex] moles of aspartame

We know, 1 mol of a particle = [tex]6.023\times 10^{23}[/tex] number of particle

So, number of molecules of aspartame in [tex]\frac{2.00\times 10^{-3}}{294.307}[/tex] moles of aspartame = [tex]\frac{2.00\times 10^{-3}}{294.307}\times 6.023\times 10^{23}[/tex]

So number of H atoms in [tex]\frac{2.00\times 10^{-3}}{294.307}[/tex] moles of aspartame = [tex]\frac{2.00\times 10^{-3}}{294.307}\times 6.023\times 10^{23}\times 18[/tex] = [tex]7.37\times 10^{19}[/tex]

RELAXING NOICE
Relax