Answer: 300[tex]\pi[/tex]
Step-by-step explanation:
Let's use the arc-length formula to solve this problem, and plug in the values that we have. Arc length is 50[tex]\pi[/tex] and the arc is 60°
Arc-length = [tex]2\pi r (\frac{x}{360})[/tex]
[tex]50\pi =2\pi r(\frac{60}{360})[/tex]
Cancel the [tex]\pi[/tex] and simplify the fraction.
[tex]50 = 2r(\frac{1}{6})[/tex]
Simplify further.
[tex]50 = r(\frac{1}{3} )[/tex]
Pass the 3 to the other side.
[tex]150=r[/tex]
So our radius is 150.
To find the circumference, we use the formula [tex]2\pi r[/tex]
Plug in r.
[tex]2\pi (150) = 300\pi[/tex]