Respuesta :
Answer:
[tex]a) \ \ P_n=(1+r)P_{n-1}\\\\b)\ \ \ P_n=1.011^n(568000)\\\\c)\ \ 626,771\\\\d)\ \ 19.10yrs\ later \ (2027 \ February)[/tex]
Step-by-step explanation:
a. Given that the population starts at 568000 and grows at 1.1% each years.
-The recursive formula for the population takes the form:
[tex]P_n=(1+r)P_{n-1}[/tex]
Where:
[tex]P_n[/tex] is the population at the nth year.
[tex]r[/tex] is the rate of growth
[tex]P_{n-1}[/tex] is the population a year before the nth year.
Hence, the recursive formula is given by [tex]P_n=(1+r)P_{n-1}[/tex]
b. The explicit formula of a population growth takes the form:
[tex]P_n=(1+r)^nP_o[/tex]
-Given that r=1.1% and the initial population is 568000
[tex]P_n=(1+r)^nP_o\\\\r=1.1\%=0.011\\\\P_n=(1+0.011)^nP_o, P_o=568000\\\\P_n=1.011^n(568000)[/tex]
Hence, the explicit formula is [tex]P_n=1.011^n(568000)[/tex]
c. The population in 2016 can be determined using the explicit formula.
-We substitute the growth rate and initial population as follows:
[tex]P_n=(1+r)^nP_o\\\\=1.011^n(568000)\\\\n=2016-2007=9\\\\\therefore P_{2016}=(1+0.011)^9\times 568000\\\\=626,770.7721\approx626,771[/tex]
Hence, the population in 2016 will be approximately 626,771
d. Given that the population after n years will be 700000.
#We substitute this value in the explicit formula to solve for n then add it to the initial year, 2007;
[tex]P_n=(1+r)^nP_o\\\\700000=1.011^n(568000)\\\\1.011^n=\frac{700000}{568000}=\frac{700}{568}\\\\n=\frac{log \ (700/568)}{log\ 1.011}\\\\=19.10\ years\\\\\#Add \ 19.10yrs \ to \ 2007\\\\=2007+19.10yrs\\\\=2026.10\approx2027[/tex]
Hence, the population will get to 700000 after 19.10 years or in February the year 2027