A fossil is discovered that has only 12.5% of the carbon-14 that it would have had originally (when the animal was alive). If the half-life of carbon-14 is 5700 years, approximately how old is the fossil?

Respuesta :

Answer:

The fossil is 17,100 years old.

Explanation:

The decay equation:

[tex]\frac{dN}{dt}\propto -N[/tex]

[tex]\Rightarrow \frac{dN}{dt}= -\lambda N[/tex]

[tex]\Rightarrow \frac{dN}{N}= -\lambda dt[/tex]

Integrating both sides

[tex]\Rightarrow \int\frac{dN}{N}= \int-\lambda dt[/tex]

[tex]\Rightarrow ln |N|=-\lambda t+c[/tex]

When t=0, N=[tex]N_0[/tex] = initial amount

[tex]ln |N_0|=-\lambda .0+c[/tex]

[tex]\Rightarrow ln |N_0|=c[/tex]

[tex]\therefore ln |N|=-\lambda t+ln|N_0|[/tex]

[tex]\Rightarrow ln |N|-ln|N_0|=-\lambda t[/tex]

[tex]\Rightarrow ln |\frac {N}{N_0}|=-\lambda t[/tex]

[tex]\Rightarrow \frac {N}{N_0}=e^{-\lambda t}[/tex]

[tex]\Rightarrow N=N_0e^{-\lambda t}[/tex]

The decay equation is

[tex]N=N_0e^{-\lambda t}[/tex]

Given that,

The half life of carbon - 14 is 5700 years.

For half life, [tex]N=\frac{1}{2} N_0[/tex]

To find the value of  [tex]\lambda[/tex], we need to put the value of N and t in the decay equation.

[tex]\frac12N_0=N_0e^{-\lambda \times 5700}[/tex]

[tex]\Rightarrow \frac12=e^{-\lambda \times 5700}[/tex]             [ Divided [tex]N_0[/tex] both sides]

Taking ln both sides

[tex]\Rightarrow ln| \frac12|=ln|e^{-\lambda \times 5700}|[/tex]

[tex]\Rightarrow ln| \frac12|={-\lambda \times 5700}[/tex]

[tex]\Rightarrow \lambda= \frac{ln| \frac12|}{-5700}[/tex]

[tex]\Rightarrow \lambda= \frac{ln|1|-ln|2|}{-5700}[/tex]             [ [tex]ln|\frac mn|= ln |m|-ln |n|[/tex]]

[tex]\Rightarrow \lambda= \frac{ln|2|}{5700}[/tex]                      [ln 1= 0]

The fossil has only 12.5% of the carbon carbon-14 that it would have had originally.

So, [tex]N=\frac{12.5}{100} N_0[/tex]

Then,

[tex]\frac{12.5}{100} N_0=N_0e^{-\frac{ln|2|}{5700}t[/tex]

[tex]\Rightarrow \frac{12.5}{100} =e^{-\frac{ln|2|}{5700}t[/tex]

Taking ln both sides

[tex]\Rightarrow ln|\frac{12.5}{100} |=ln|e^{-\frac{ln|2|}{5700}t}|[/tex]

[tex]\Rightarrow ln|\frac{12.5}{100} |={-\frac{ln|2|}{5700}t}[/tex]

[tex]\Rightarrow t=\frac{ ln|\frac{12.5}{100}|} {-\frac{ln|2|}{5700}}[/tex]

[tex]\Rightarrow t=\frac{ ln|\frac{12.5}{100}|\times 5700} {-{ln|2|}}[/tex]

[tex]\Rightarrow t=17,100[/tex]

The fossil is 17,100 years old.

ACCESS MORE