Respuesta :
Answer:
The fossil is 17,100 years old.
Explanation:
The decay equation:
[tex]\frac{dN}{dt}\propto -N[/tex]
[tex]\Rightarrow \frac{dN}{dt}= -\lambda N[/tex]
[tex]\Rightarrow \frac{dN}{N}= -\lambda dt[/tex]
Integrating both sides
[tex]\Rightarrow \int\frac{dN}{N}= \int-\lambda dt[/tex]
[tex]\Rightarrow ln |N|=-\lambda t+c[/tex]
When t=0, N=[tex]N_0[/tex] = initial amount
[tex]ln |N_0|=-\lambda .0+c[/tex]
[tex]\Rightarrow ln |N_0|=c[/tex]
[tex]\therefore ln |N|=-\lambda t+ln|N_0|[/tex]
[tex]\Rightarrow ln |N|-ln|N_0|=-\lambda t[/tex]
[tex]\Rightarrow ln |\frac {N}{N_0}|=-\lambda t[/tex]
[tex]\Rightarrow \frac {N}{N_0}=e^{-\lambda t}[/tex]
[tex]\Rightarrow N=N_0e^{-\lambda t}[/tex]
The decay equation is
[tex]N=N_0e^{-\lambda t}[/tex]
Given that,
The half life of carbon - 14 is 5700 years.
For half life, [tex]N=\frac{1}{2} N_0[/tex]
To find the value of [tex]\lambda[/tex], we need to put the value of N and t in the decay equation.
[tex]\frac12N_0=N_0e^{-\lambda \times 5700}[/tex]
[tex]\Rightarrow \frac12=e^{-\lambda \times 5700}[/tex] [ Divided [tex]N_0[/tex] both sides]
Taking ln both sides
[tex]\Rightarrow ln| \frac12|=ln|e^{-\lambda \times 5700}|[/tex]
[tex]\Rightarrow ln| \frac12|={-\lambda \times 5700}[/tex]
[tex]\Rightarrow \lambda= \frac{ln| \frac12|}{-5700}[/tex]
[tex]\Rightarrow \lambda= \frac{ln|1|-ln|2|}{-5700}[/tex] [ [tex]ln|\frac mn|= ln |m|-ln |n|[/tex]]
[tex]\Rightarrow \lambda= \frac{ln|2|}{5700}[/tex] [ln 1= 0]
The fossil has only 12.5% of the carbon carbon-14 that it would have had originally.
So, [tex]N=\frac{12.5}{100} N_0[/tex]
Then,
[tex]\frac{12.5}{100} N_0=N_0e^{-\frac{ln|2|}{5700}t[/tex]
[tex]\Rightarrow \frac{12.5}{100} =e^{-\frac{ln|2|}{5700}t[/tex]
Taking ln both sides
[tex]\Rightarrow ln|\frac{12.5}{100} |=ln|e^{-\frac{ln|2|}{5700}t}|[/tex]
[tex]\Rightarrow ln|\frac{12.5}{100} |={-\frac{ln|2|}{5700}t}[/tex]
[tex]\Rightarrow t=\frac{ ln|\frac{12.5}{100}|} {-\frac{ln|2|}{5700}}[/tex]
[tex]\Rightarrow t=\frac{ ln|\frac{12.5}{100}|\times 5700} {-{ln|2|}}[/tex]
[tex]\Rightarrow t=17,100[/tex]
The fossil is 17,100 years old.