Figure ABCD is a parallelogram.
What are the lengths of line segments AB and BC?
3
-2
в
• AB = 4, BC = 16
AB = 4; BC = 8
AB = 10; BC = 20
• AB = 10; BC = 28
y
+
6

Figure ABCD is a parallelogram What are the lengths of line segments AB and BC 3 2 в AB 4 BC 16 AB 4 BC 8 AB 10 BC 20 AB 10 BC 28 y 6 class=

Respuesta :

Given:

Given that ABCD is a parallelogram.

The length of AB is 3y - 2.

The length of BC is x + 12.

The length of CD is y + 6.

The length of AD is 2x - 4.

We need to determine the length of AB and BC.

Value of y:

We know the property that opposite sides of a parallelogram are congruent, then, we have;

[tex]AB=CD[/tex]

Substituting the values, we get;

[tex]3y-2=y+6[/tex]

[tex]2y-2=6[/tex]

     [tex]2y=8[/tex]

       [tex]y=4[/tex]

Thus, the value of y is 4.

Value of x:

We know the property that opposite sides of a parallelogram are congruent, then, we have;

[tex]AD=BC[/tex]

Substituting the values, we get;

[tex]2x-4=x+12[/tex]

 [tex]x-4=12[/tex]

       [tex]x=16[/tex]

Thus, the value of x is 16.

Length of AB:

The length of AB can be determined by substituting the value of y in the expression 3y - 2.

Thus, we have;

[tex]AB=3(4)-2[/tex]

     [tex]=12-2[/tex]

[tex]AB=10[/tex]

Thus, the length of AB is 10 units.

Length of BC:

The length of BC can be determined by substituting the value of x in the expression x + 12.

Thus, we have;

[tex]BC=16+12[/tex]

[tex]BC=28[/tex]

Thus, the length of BC is 28 units.

Hence, the length of AB and BC are 10 units and 28 units respectively.

ACCESS MORE