Respuesta :
(2,-1)(8,4)
slope = (4-(-1) / (8-2) = (4 + 1)/6 = 5/6
y - y1 = m(x - x1)
(8,4)...x1 = 8 and y1 = 4
slope(m) = 5/6
now we sub
y - 4 = 5/6(x - 8) <==point-slope form
y - 4 = 5/6x - 20/3
y = 5/6x - 20/3 + 4
y = 5/6x -20/3 + 12/3
y = 5/6x - 8/3
-5/6x + y = - 8/3...multiply by -6
5x - 6y = 16 <==standard form
slope = (4-(-1) / (8-2) = (4 + 1)/6 = 5/6
y - y1 = m(x - x1)
(8,4)...x1 = 8 and y1 = 4
slope(m) = 5/6
now we sub
y - 4 = 5/6(x - 8) <==point-slope form
y - 4 = 5/6x - 20/3
y = 5/6x - 20/3 + 4
y = 5/6x -20/3 + 12/3
y = 5/6x - 8/3
-5/6x + y = - 8/3...multiply by -6
5x - 6y = 16 <==standard form
Gradient of the line;
m=[tex] \frac{change in y}{change in x} [/tex]
m=[tex] \frac{4--1}{8-2} [/tex]
m=[tex] \frac{5}{6} [/tex]
y=mx+c
y=[tex] \frac{5}{6} x+c[/tex]
Replacing for x and y using point (2, -1)
-1=[tex] \frac{5}{6} *2+c[/tex]
-1-5/3=c
c=-8/3
y=[tex] \frac{5}{6} x- \frac{8}{3} [/tex]
m=[tex] \frac{change in y}{change in x} [/tex]
m=[tex] \frac{4--1}{8-2} [/tex]
m=[tex] \frac{5}{6} [/tex]
y=mx+c
y=[tex] \frac{5}{6} x+c[/tex]
Replacing for x and y using point (2, -1)
-1=[tex] \frac{5}{6} *2+c[/tex]
-1-5/3=c
c=-8/3
y=[tex] \frac{5}{6} x- \frac{8}{3} [/tex]
