Respuesta :

The ratio of the surface area of a cylinder to the surface area of a sphere is [tex]\frac{r+h}{2r}[/tex], that is mentioned in option E.

Step-by-step explanation:

The given is,

                Cylinder and sphere has same area.

Step: 1

               Formula for surface area of cylinder,

                                 [tex]A = 2\pi rh + 2\pi r^{2}[/tex].............................(1)

               Where, r - Radius of cylinder

                           h - Height of cylinder

Step:2

              Formula for surface area of sphere,

                                [tex]A=4\pi r^{2}[/tex].......................................(2)

              Where, r - Radius of sphere

Step:3

             Ratio of the surface area of a cylinder to the surface area of a sphere,

                                     [tex]= \frac{Surface area of cylinder}{Surface area of sphere}[/tex]

                                     [tex]=\frac{ 2\pi rh + 2\pi r^{2} }{ 4\pi r^{2}}[/tex]

                                     [tex]= \frac{2\pi r h }{ 4\pi r^{2}} + \frac{ 2\pi r^{2} }{4\pi r^{2}}[/tex]

                                     [tex]= \frac{ h }{ 2 r} + \frac{ 1 }{2}[/tex]

                                     [tex]= \frac{2h + 2r}{(2r)(2)}[/tex]

                                     [tex]= \frac{2(r + h)}{2 (2r)}[/tex]

                                     [tex]= \frac{r + h}{2r}[/tex]

              Ratio of the surface area of a cylinder to the surface area of a sphere   [tex]= \frac{r + h}{2r}[/tex] .

Result:

              The ratio of the surface area of a cylinder to the surface area of a sphere is [tex]\frac{r+h}{2r}[/tex], that is mentioned in option E.

ACCESS MORE