Answer:
Work done by the gas for the given volume and pressure [tex]= 4996.18[/tex] pounds foot
Explanation:
Given
Pressure applied [tex]= 1700[/tex] pounds per square foot
Initial Volume [tex]= 5[/tex] cubic feet
Final Volume [tex]= 9[/tex] cubic feet
As we know pressure is inversely proportional to V
[tex]P = \frac{k}{V}[/tex]
where k is the proportionality constant
V is the volume and
P is the pressure
Work done
[tex]\int\limits^{V_2}_{V_1} {P} \, dV[/tex]
[tex]\int\limits^{V_2}_{V_1} {\frac{k}{V} } \, dV\\= \int\limits^{V_2}_{V_1} {\frac{1700 * 5}{V} } \, dV\\= 8500* \int\limits^{V_2}_{V_1} {\frac{1}{V} } \, dV[/tex]
Integrating the above equation, we get-
[tex]8500 ln \frac{V_2}{V_1} \\8500 * 2.303 * \frac{9}{5} \\= 4996.18[/tex]
Work done by the gas for the given volume and pressure [tex]= 4996.18[/tex] pounds foot